Integral modular data and congruences

نویسنده

  • Michael Cuntz
چکیده

We compute all fusion algebras with symmetric rational S-matrix up to dimension 12. Only two of them may be used as S-matrices in a modular datum: the S-matrices of the quantum doubles of Z/2Z and S3. Almost all of them satisfy a certain congruence which has some interesting implications, for example for their degrees. We also give explicitly an infinite sequence of modular data with rational Sand T -matrices which are neither tensor products of smaller modular data nor S-matrices of quantum doubles of finite groups. For some sequences of finite groups (certain subdirect products of S3,D4,Q8, S4), we prove the rationality of the S-matrices of their quantum doubles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for Fourier Coefficients of Half-integral Weight Modular Forms and Special Values of L−functions

Congruences for Fourier coefficients of integer weight modular forms have been the focal point of a number of investigations. In this note we shall exhibit congruences for Fourier coefficients of a slightly different type. Let f(z) = P∞ n=0 a(n)q n be a holomorphic half integer weight modular form with integer coefficients. If ` is prime, then we shall be interested in congruences of the form

متن کامل

Congruences via Modular Forms

We prove two congruences for the coefficients of power series expansions in t of modular forms where t is a modular function. As a result, we settle two recent conjectures of Chan, Cooper and Sica. Additionally, we provide tables of congruences for numbers which appear in similar power series expansions and in the study of integral solutions of Apéry-like differential equations.

متن کامل

THE LATTICE OF CONGRUENCES ON A TERNARY SEMIGROUP

In this paper we investigate some properties of congruences on ternary semigroups. We also define the notion of congruence on a ternary semigroup generated by a relation and we determine the method of obtaining a congruence on a ternary semigroup T from a relation R on T. Furthermore we study the lattice of congruences on a ternary semigroup and we show that this lattice is not generally modular...

متن کامل

Arithmetic Aspects of the Theta Correspondence and Periods of Modular Forms

We review some recent results on the arithmetic of the theta correspondence for certain symplectic-orthogonal dual pairs and some applications to periods and congruences of modular forms. We also propose an integral version of a conjecture on Petersson inner products of modular forms on quaternion algebras over totally real fields.

متن کامل

Quadratic Congruences for Cohen - Eisenstein Series

The notion of quadratic congruences was introduced in the recently appeared paper [1]. In this note we present another, somewhat more conceptual proof of several results from loc. cit. Our method allows to refine the notion and to generalize the results quoted. Here we deal only with the quadratic congruences for Cohen Eisenstein series. A similar phenomena exists for cusp forms of half-integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008